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On conservation laws in fourth-order potential barriers 
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Department of Physics and Astronomy, University of Glasgow, Glasgow GI2  8QQ, U K  

Received 12 January 1990 

Abstract. Wave propagation across potential barriers is an important aspect of theoretical 
physics. In this paper, the waves are described by fourth-order ordinary differential 
equations, giving two modes in which wave-energy can be carried in the non-dissipative 
medium. A conserved quantity controlling the relative distribution of energy into the 
different channels of propagation is derived, using only the properties of the governing 
equations. 

1. Introduction 

In many wave propagation problems, potential barriers play a major role in determining 
the response of a medium to small perturbations about a stable equilibrium. In most 
classical examples, the model equations are second order ordinary differential 
equations, so that the barrier is concerned only with transmission and reflection of the 
single mode supported by such a description. (Throughout we assume that the medium 
is non-dissipative.) 

A plasma, however, can support many types of wave simultaneously, so that any 
barrier problem in this context properly should account for the many possible ways 
in which energy can be transported by oscillations in the medium. 

In particular, a cold plasma (which is one in which the hydrodynamic pressure is 
not important) can support two kinds of wave: ordinary and extraordinary (Stix 1962). 
Under certain circumstances, the equilibrium can be arranged such that a localised 
barrier is presented to any wavemotion in the plasma (Diver and Laing 1989). This 
then is the motivation for studying transmission, reflection and mode conversion in 
such fourth-order systems, and for deriving a conserved quantity governing the forward 
and backward scattering of energy into the available channels. 

2. Model equations 

A typical model equation describing a physical system capable of supporting two 
distinct types of wave is the following ordinary differential equation (ODE):  

y""+ay'" '+ipy'+ y y = o  (1) 
where we take the parameters a, p and y to be real constants. Note that the coefficient 
of the odd order derivative term is purely imaginary, since then the polynomial in k 
arising from Fourier transformation has real coefficients. That is, on substituting y = elhz 
into ( l ) ,  k must be a solution of 

(2) k4 - a k 2  - p k  + y = 0. 
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3. Mathematical technique 

Before describing the actual mathematical method used to calculate the conservation 
law, it is useful to define the Wronskian W( U, U), and to detail certain of its properties 
which will prove useful in the full analysis. 

The Wronskian of two dependent variables U, U is defined by 

W( U, U )  = UU' - U ' U  

W'(U, U )  = U V ( ' " -  U I I ' i U  

W'"'(U, 0)=2W'(u ' ,  U ' ) + u u ( ' L i - u " L ' u .  

y * c l L i +  

(3) 

where denotes d/dz. Differentiation of W(u, U )  yields the following relations: 

W''Ii( U, U )  = W( U', U') + U U I ' l l )  - u""Iu 
(4) 

The complex conjugate of equation (1) is 

ipy*'+ yy* = 0. ( 5 )  
Using these two equations (1) and ( 5 ) ,  it is possible to eliminate each derivative term 
in turn by cross multiplication, in such a way that the relations (4) may be used to 
simplify the remainders. Thus multiplying (1) by y*( lL i ,  (5) by Y " ~ '  and subtracting 
yields 

(6) 

( 7 )  

(8) 

y)+ip(y 'y*+y*'y)  =O.  (9) 

(10) 

,,,,*("JYI'L)) + i p ( Y * ! ~ L i Y ~ + Y * ~ Y ( ~ ~  I) + y(y*(ILJ'y - y * Y (  I L  J)  = 0. a(y* ' " '  " ' ) -  

In a similar manner, we can construct 
Y*! If iY '  IL 1 - Y*' It i Y (  1 + $(Y*'"'Y' + Y* 'Y ' " ' )  + y(Y*'Il'Y - y*y !  I 1  I )  = 0 

Y ! ~ ~ J ' y * ' + Y * ! ~ ~ ) Y ~ +  a ( Y ( l ~ i Y * ~ + Y * ( ~ ~ i Y ~ )  + y ( Y Y * ~ + Y * Y ~ )  = 0 

and finally, 
Y!" I Y *  - Y*'" J Y  + a ( y '  I I  l Y *  - Y*' 11 I 

U ' u ! l l l i + U l l " i u ' ~ U ' l l i  U ! I f )  

Defining the function $(U, U )  by 

and noting that 
$'(U, U )  = u'u!'L'+ u('LJl j '  

QW(Y", Y*")+iP$+ YE W Y ,  Y * )  -2W(Y', Y*')l = X I  

W(Y*", Y")+iP[Y*'Y'l- YW(Y*, Y )  =xz 
K Y * ,  Y )  + ay*'y'+ yy*y = x3 

W"(Y*, Y 1 - 2 W(Y*', Y ' )  + a W Y * ,  Y )  + iPy*y = x4 

we can now write the first integrals of equations (6)-(9) as 

(11) 

(12) 

(13) 

(14) 
where the x, are constants. 

Since there are only three parameters in the problem ( a ,  p and y) ,  we expect only 
three of the above equations to be independent. To show that this is indeed the case, 
consider the first of the set: 

XI = aW(y*", Y " ) - i P l ( r ( Y * , Y ) + Y [ w " ( Y * , Y ) - 2 w ( Y * ' , Y ' ) l  

= aW(Y*",Y")-iP$(y*,y)+ Y[X4-iPY*y-aW(y*,y)l by (14) 
= a [ x z - i P Y * ' Y ' l - i P $ ( Y * , Y ) +  y[x4-iPy*yl by (12) 
= - i P [ ~ Y * ' Y ' + $ ( Y * , Y ) + Y Y * Y l + a X 2 +  YX4 
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which is essentially equation ( 1 3 ) .  Henceforth, the complete set of conserved quantities 
can be taken as 

W(y*”,y”)+ip[y*’y’]-  y W ( y * , y )  = N ( 1 5 )  

W ” ( ~ * , y ) - 2 W ( y * ’ , y ’ ) + a W ( y * , y ) + i p y * y =  P (16) 

+ ( y * ,  y )  + ay*’y‘+ yy*y  = Q. 
These three quantities are invariants for the solution of ( 1 ) .  

4. Physical model 

The motivation for deriving (15)-(17) came from considering a plasma, capable of 
supporting two distinct modes simultaneously, which possessed a finite region in which 
the modes had a different wavelength from the rest of the solution space (Diver and  
Laing 1989). 

This problem may be viewed as an extension to the classical second-order wave 
barrier problems of quantum mechanics, which are concerned only with one particular 
wavemode (see for example, Heading 1962). 

We are concerned, in this paper, with a genuine four channel scattering problem. 
Thus, consider the situation in which the real line is divided into three regions, labelled 
I, I 1  and 111. Region I1 is finite, and is bounded on either side by the semi-infinite 
domains I and  111. The wave characteristics in I and 111 are taken to be identical, but 
different from those in 11. In all regions, waves are described by an  ODE similar to 
( l ) ,  with the allowable modes defined by the roots of polynomials similar to (2).  

In every region, each of the invariants ( 1 5 1 4 7 )  must hold. Consequently, we may 
apply each formula, yielding for example, 

W(JJP”, A7 +iPl[Y;’Y;l-  YI W(YT, Y l )  = NI 

W”(YT, Y I )  - 2  W(YP’, YI)  + W(Y?, J J r )  + i P l Y T Y I  = PI 

Ccl(yT, Y I )  + ~ I Y T ’ Y ;  + Y I Y ? Y I  = 91 
in region I, taking the parameters to have the values c y I ,  P I  and yl. This can be repeated 
in both I1 and 111, with the obvious extension of notation. 

Note that each invariant is unchanged in a region, but need not be identical in 
value in distinct regions, since the parameters are different. Although the parameters 
in regions I and  111 are the same, the intervening region I 1  then prevents the direct 
matching of the invariants between the two semi-infinite solution spaces. This is 
because the differential equations are not defined at the interfaces, since the coefficients 
a, p and y are ambiguous there. 

Contrast this with the situation in the second-order barrier, in which the invariant 
is the Wronskian, and is independent of any physical parameter (Heading 1962). 

However, in order to define a fourth-order equation in each region, we must have 
continuity in y and its first three derivatives. We will preserve this feature of the 
solution across the interface, and  in this way, match the form of solution in each region 
using the invariants. This will generate a formula connecting the incident waves with 
the transmitted, analogous to the reflection formula of the classical barrier. 

Defining the notation 

[41= 91 - 911 
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for any parameter q, and further denoting the value of y at the interface between 
regions I and I1 by 9, and between I1 and I 1 1  by J, we can construct the differences 
between invariants at each interface: 

(18) 

(19) 

(20) 

[ i p ] j * ' j ' -  [ y] W( j* ,  j )  = NI - NI, 

[ a 1 WG*, j 1 + iP I S *  = PI - 4 I 

[~Ij 'y**'+[Yl9.?* = QI - QII 
and 

where (4) denotes ql1-qlll for parameter q. Note that the terms independent of the 
parameters must vanish, since y and its derivatives are continuous across an interface. 
Eliminating the terms involving 9 from equations (18)-(20), we have 

~ ~ l ~ ~ l - ~ l l ~ - ~ ~ P 1 ~ Q l - Q 1 l ~ + ~ ~ l ( ~ I - ~ l l ~ = ~  (24) 

defining a quantity which is conserved in passing from region I to region I 1  
In the same way, equations (21)-(23) yield 

(a)(Nll- ~ l l l ~ - ~ ~ P ~ ~ Q l l - Q l l l ~ + ~ ~ ~ ~ ~ l l - ~ l l l ~ = ~ .  (25) 

In  our particular example, ( q )  = -[SI, since region I11 has identical characteristics to 
region I. However, (24) and (25) are quite general conservation laws, prescribing 
quantities which are unvarying on crossing into neighbouring regions. 

Returning to our particular case, we can summarise (24) and (25) in the following 
law: 

[ a ]SN- [ iP ]SQ+[y]SP=O 

SN = N1 - N,ll 
(26) 

SP = PI -PI, ,  

This is then our connection formula, allowing information about the solution in region 
I to be communicated to region 111. 

S Q  = 91 - QIII. 

5. Explicit example 

In order to reveal the physical implications of (27), consider the following example, 
in which we have chosen P = 0, in order to simplify the interpretation of the solution 
forms. The polynomial form (2)  is then biquadratic, giving two modes propagating 
both backwards and forwards in space. 

Since in each of the three regions of solution space, the O D E  has real and constant 
coefficients, the solution can be written down as 



On conservation laws in fourth order potential barriers 1703 

This form of solution describes a wave of unit amplitude and of wavenumber k ,  
incident from --OO and encountering a 'barrier' at z = -L,  leading to reflected waves 
with amplitudes C ,  of the incident wavenumber k ,  , and Cz of the companion wavenum- 
ber k , .  The transmission side, i.e. region 111, has waves travelling in the positive z 
direction only, with amplitudes F ,  and F , ,  and the same wavenumbers as region I. 
The finite barrier, region 11, is the segment in which the wavenumbers are different 
constants from those elsewhere on the real line. 

The physical implications of the connection formula are revealed when the solutions 
yl  and y , , ,  are substituted from (27) and  (29) into (26). Note that the parameters (Y 

and y are readily identified, for example 

yI = k;'kl C Y ,  = k f +  k i  

in regions I and 111. The task is then to evaluate the invariants N and P in each 
region, using (27) and (29) as the appropriate form for Y in each case. 

The algebra is tedious, and lengthy, but is simplified by recognising that no  cross 
terms play a role in the formulae (since they are position dependent). Thus we have 

N , = ( k : -  k ; ) ( k : ( l  -lCl12)+k~lC21') ( 3 0 )  

KI 

 CY] - [ 73 ( k :  - IT)(ki  - 1 ; )  - 
= k f [ a ]  - [ y ]  - ( k f  - IT) (k f  - 1 ; ) '  

(34) 

This relation governs the distribution of wave-energy across the available propagation 
channels. 

6. Discussion 

Equation (34) is the conservation law for our model system. The formula depends on  
the propagation characteristics of the connecting region, in such a way that if any one 
of the two central wavenumbers is equal to the incident wavenumber, then the second 
wavesolution is not excited in region I11 by passing through region 11. In this case 
we say that there is no  mode conversion. This agrees with physical intuition, in that 
waves propagate throughout with the same wavelength, and so the barrier is transparent 
to the incident wave. 

It is unusual for a conservation law to depend on the precise mechanics of the 
interaction region. However, in most cases, this is because conservation laws are 
presented for second-order systems, in which there is only one possible wavemode, 
and  so the system parameters are absent from the definition of the invariant. In this 
higher order model, distinct modes have different intrinsic wave-energies, and this is 
reflected in the explicit role of the wavenumbers in the invariants. The matching 
process across each interface must then take account of the relative wavenumbers 
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available for the propagation of energy. Since the governing ODES d o  not apply at the 
interface, the minimum possible assumption about the solution is its continuity, and 
that of its derivatives, despite the ambiguity of the parameters. This is an extension 
of the classical barrier, but to a more richly structured problem. 

The conservation law (34) has been verified independently, by numerical simulation. 
The results are detailed in our earlier paper (Diver and Laing 1989) and  need not be 
repeated here. Suffice it to say that the result is a physically meaningful one, and has 
far reaching implications for the treatment of higher-order wave problems. 
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